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Abstract 

With CA16, enterovirus-71 is the causative agent of hand foot and mouth disease (HFMD) which occurs mostly in 
children under 5 years-old and responsible of several outbreaks since a decade. Most of the time, HFMD is a mild 
disease but can progress to severe complications such as meningitis, brain stem encephalitis, acute flaccid paralysis 
(AFP) and even death; EV71 has been identified in all severe cases. Therefore, it is actually one of the most public 
health issues that threatens children’s life. 3Cpro is a protease which plays important functions in EV71 infection. To 
date, a lot of 3Cpro inhibitors have been tested but none of them has been approved yet. Therefore, a drug screening 
is still an utmost importance in order to treat and/or prevent EV71 infections. This work highlights the EV71 life cycle, 
3Cpro functions and 3Cpro inhibitors recently screened. It permits to well understand all mechanisms about 3Cpro and 
consequently allow further development of drugs targeting 3Cpro . Thus, this review is helpful for screening of more 
new 3Cpro inhibitors or for designing analogues of well known 3Cpro inhibitors in order to improve its antiviral activity.
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Background
Enterovirus 71, belongs to human enterovirus A spe-
cies, Picornaviridae family, was discovered in a patient 
with central nervous system (CNS), in California, 1969 
[1]. In term of structure, EV71 is a non-enveloped virus 
with a capsid made up of 60 protomers of envelop pro-
teins and contains a single-stranded RNA positive [2, 
3]. Each protomer contains four envelop proteins: VP1–
VP2–VP3, located in the external part and are exposed to 
the host antibodies and cell receptors; and VP4 which is 
completely hidden in the internal part. The RNA genome 
is small (7.5 kb) and constituted by 3 parts: Pl, P2 and P3, 
flanked by 2 UTRs (non-translated regions) located in 5′ 
and 3′ [4]. Several outbreaks and fatal cases, caused by 
this virus, make it a major public health issue mainly in 

the Asia-Pacific region. Indeed, China has experienced 
the latest and largest outbreaks with more than 1.7 mil-
lion cases, 27.000 patients with severe neurological com-
plications and 905 deaths, in 2010 [5]; while a cyclical 
and seasonal pattern occurs in Sarawak, Japan, Taiwan 
and Vietnam [6–9]. To manage such infections and epi-
demics is primordial, and the best way to eradicate this 
infection is the combination of a valuable vaccine and 
drugs [10]. Nevertheless, vaccine research has progressed 
more than drugs discovery because to date there is no 
approved drug against EV71 while 3 vaccines have com-
pleted their clinical trials III and are in following-up stage 
[11]. For this reason, the treatment is only symptomatic 
along with public surveillance systems [12]. Many plant 
extracts and chemical compounds have been discovered 
as having a potential effects against the virus and might 
be used as drugs against enterovirus 71 infections but 
none of them has been approved yet [13]. Thus, the find-
ing of an approved and valuable drug is still an utmost 
importance. 3Cpro represent a valuable target because it 
has primordial functions in both virulence and virus-host 
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interactions. This review highlights the important func-
tions and recent progress of 3Cpro inhibitors and permit 
to acknowledge that 3Cpro is a valuable target for EV71 
drug development, which should be deeply investigated.

Review on EV‑71 life cycle
The EV71 life cycle goes through an attachment and 
entry, via a recognition and binding of surface protein 
to the cell receptors (SCARB2, PSGL-I, Anx2, Heparan 
Sulfate, Sialylated glycan) [14], to the release of the new 
virions by cell lysis (Fig. 1a). The mechanism of entry is 
known as through clathrin-mediated endocytosis (real 
events remain unclear) but recent investigation has 
showed that multiple pathways may be used by EV71 to 
enter the host cells [15, 16]. Then, a series of conforma-
tional changes occurs at low pH and let the virus to leave 
his icosahedral capsid structrure to an A-particle: loss 
of VP4 and formation of a channel followed by a release 
of RNA in cell cytoplasm [17]. Once the RNA is located 
in the cytoplasm, the viral genome, as a positive sense, 
act as an mRNA, so directly translated into a polypro-
tein (Pl, P2, P3) of 2193 AA. The polyprotein processing 
is assured by two main proteins 2Apro and 3Cpro . Thus, 
2Apro and 3Cpro cleaved the polyprotein into VP1–VP4 
(structural protein) and 2A–2C, 3A–3D (non-structural 
protein) [18]. When a considerable number of the 11 
mature proteins are synthesized, the RNA replication 
take place after the interactions of IRES-specific-trans-
acting factors (ITAFs), which are translocated from the 
nucleus to the cytoplasm, with the internal ribosome site 
(IRES) at its stem-loop [19, 20]. A negative-RNA is first 
synthesis within using the viral genome as template, and 
then followed by synthesis of numerous positive-strands 
using in turn the negative-strand as template. RNA-
dependent RNA- polymerase (RdRp) or 3Dpo1 is the viral 
enzyme responsible of the RNA synthesis [18]. Finally, 
the structural proteins and the genome is encapsidated 
to form a new virion which is released during lysis of the 
cell (apoptosis).

3Cpro functions
In addition to its polyprotein processing activity, the non-
structural protein 3C plays a role in numerous biological 
mechanisms. Recent discovery of the 3C crystal struc-
ture has permit to identify the sites of its substrat bind-
ing affinity (between 2 similar β-ribbon) and confirmed 
its cleavage activity of  the viral polyprotein but also 
several host proteins in order to optimize viral replica-
tion and spreading [21]. EV71 infection symptoms range 
from mild to severe diseases which depend on both the 
viral genetic sequence and the host immune system. In 
fact, the relationship between 3C genome sequence and 
the corresponding clinical symptoms (mild or severe) 

revealed that the 79th residue is the responsible sequence 
that leads to severe diseases [22]. Besides, Li et  al. [23] 
have found another residue associated with the viru-
lence of EV71, their finding suggests that the 69th resi-
due is the virulent determinant because a single mutation 
of the hydrogen bond between Asn69 and Glu71 causes 
a significant decrease in the EV71 infection. The same 
result was found during the study of NK-1.8k compound 
where the substitution of asparagine at 69th residue by 
serine has decreased the fitness of the virus but on the 
other hand causes total resistance towards the tested 
compound. Indeed, the 69th residue plays an important 
role in 3Cpro functions even if it is not directly part of the 
active site according to the crystal structure [24]. EV71 
interacts with the innate immune system through PRRs 
(Pattern-recognition receptors) such as TLRs which is 
involved in IFN − I production, RLRs responsible for 
detection of RNA virus infection and NLRs which func-
tion is to form cytosolic inflammasome [25]. In fact, 
concomitantly with the virus invasion, different host-
immune responses occur such as production of type I 
interferon (IFN(α/β) ) ; then to escape and to impair the 
immunity, the virus uses the proteolytic activity of 3Cpro 
by cleaving numerous needed host proteins: KPNA-I in 
order to suppress the signaling pathway STAT/KPNA-
I [26], TAK1/TAB1/TAB2/TAB3 complex [27], TRIF, 
shut-off IR3/7 [28] and consequently block the produc-
tion of IFN(α/β) Likewise, to permit the release and 
spread of virus progeny, 3C induced apoptosis of host 
cells through the capsase-3 pathway [29], cleavage of 
hnRNPA1 [30] and PinXl [31]. Finally, 3C is able to enter 
the nuclei through its precursor 3CD  [32]  and cleaves 
the polyadenylation factor CstF-64. As a result, the host 
mRNA 3’ polyadenylation ,which is essential for its trans-
location, stability and translation, is shut off [33] (Fig. 1b). 
Due to such functions, 3C is definitely an excellent target 
for drug screening.

3Cpro inhibitors
3Cpro is an important target to block EV71 replication. 
Indeed, several 3Cpro inhibitors have been deeply investi-
gated (Table 1, Fig. 1b)

Peptidomimetic compounds

(a) Rupintrivir and analogues: Rupintrivir (AG7088) is 
probably the well-known 3Cpro inhibitors to date. 
More than being a safe compound for the cells, it 
is able to bind to the active site of 3Cpro [21]. It was 
firstly identified as 3C Human Rhinovirus (HRV) 
inhibitors, later Zhang et al. [34] shown that it also 
had a strong antiviral activity against EV71 3Cpro in 
both cell lines and animal models. In fact, AG7088 
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Fig. 1 Illustration of EV71 life cycle and virus-host interactions. EV71 replication steps: from attachment to release (a). 3C-host proteins interactions 
are blocked by 3Cpro inhibitors (b)
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inhibits the antiviral activity at EC50 = 0.01µM 
and protease activity at IC50 = 2.5± 0.5µM with 
CC50 = 1000µM ; in-vivo a low dose of 0.1  mg/
kg prevent severe symptoms in suckling mice. 
Since the discovery of this compound, several ana-
logues have been designed in order to increase its 
efficiency against EV71 infection [21]. To improve 
the anti-EV71 activity of rupintrivir, Kuo et al. has 

designed several inhibitor analogues (compound 1 
to 10b ) by replacing the P3 group of AG7088 with 
a series of cinnamoyl derivates. The compound 
10b seemed to be potentially effective against EV71 
among all the analogues, with an EC50 and CC50 of 
0.018µM and > 25µM respectively [35]. Then later 
Shang et  al. [36] replaced the cinnamoyl of com-
pound 1 to 2-chloride-phenylacetyl and noticed 

Table 1 Detailed list and  classification of   3Cpro inhibitors: chemical structure, classes, effectivity, test in  cell lines 
and animal models

Chemical structures Classes Compound’s 
names

IC50/EC50 Cell lines and
animal 
models

References

Peptidomimetic 
compounds

AG7088 0.01 µM RD, 2 days 
suckling 
mice

[21]

Compound 10b 0.018 µM RD [35]

Compound 1 
(with 2-
chloride-
phenylacetyl)

1.89±0.25 µM RD [36]

NK-1.8k 0.108 µM and 
2.41 µM

RD, T293, 
Vero

[24]

SG85 180 nM
0.039 to 
0.200 µM

RD, Huh7, 
Vero, BGM, 
Hela

[38,39]

(R)-1 0.088±0.006 µM RD, 293T [40]

NK-1.8k

R=Z-Ser(tBu)-, SG85
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Table 1 (continued)

4e and 4g 0.21±0.05 and 
0.033±0.008 µM 
respectively

Adult male 
mice

[41]

8v, 8w and 8x 1.32±0.26, 
1.88±0.35 and 
1.52±0.31 µM

[42]

Non-peptidyl 
compound

DC07090 22.09±1.07 µM RD [43]

Flavonoids Luteoloside 0.36 mM/0.43 m
M

RD [45]

Quercetin 8.8 µM /12.1 
µM

RD/ Vero [46]

CPI 4.03 µM RD [47]

RNA 
interference

siRNA RD/ suckling 
mice

[48,49]

4e 4g
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that the efficiency of it antiviral activity has been 
increased twiceIC50 = 1.89± 0.25µM . Another 
method to further improve rupintrivir action is to 
combine it with IFN(α/β) . In fact, it was proved 
that rupintrivir and Interferon had an synergistic 
inhibition against EV71 infection [37].

(b) NK-1.8k: is a peptidyl aldehyde discovered to have 
strong anti-viral activity against not only EV71 but 
also the Enterovirus 68. The mechanism of action is 
known as the same as rupintrivir which targeted the 
3Cpro EV71 in dependent-concentration manner. 
However, structurally, they are different because 
NK-1.8k is a dipeptide with six-member-ring lac-
tam and rupintrivir, a tripeptide with five-member-
ring lactam. Thus, its structure confers to NK-1.8k 
a better stability and drug features than rupin-
trivir which is always taken as reference. Indeed, 
NK-1.8k decrease the viral RNA production at 
EC50 = 34.5 nM . Moreover, it is potent in all the 
3 genotypes of EV71 in different cell lines (RD and 
T293 EC50 = 0.108µM ; Vero EC50 = 2.41µM ) 
[24]. NK-1.8k represents a new peptidomimetic-
compound which might take the place of rupintrivir 
as an achetype in EV71 drug screening.

(c) SG85: the 3Cpro inhibitors SG85 is a peptidic 
Michael acceptor compound. It has been tested 
against Enterovirus 68, EV71, echovirus 11 and 
various rhinovirus serotypes. However, it was found 
to be more potent against HRV11 and EV71 with 
EC50 = 60 nM , EC50 = 180 nM respectively [38]. 
Furthermore, it has screened to have strong antivi-
ral activity against all the 11 EV71 strains with EC50 
between 0.039 and 0.200µM [39]. Deep study of 
SG85 is needed in order to progress the drug dis-
covery of EV71.

(d) (R)-1: is proved to be one of the most effi-
cient 3Cpro inhibitors screened to date with an 
EC50 = 0.088± 0.006µM . However, the presence 
of cyanohydrins, which is labile, gives it unstable 
and toxic properties [40].

(e) 4e and 4g: are compounds resulted from improve-
ment of (R)-1. In fact, acyl cyanohydrins which 
make unstable (R)-1 have been replaced by 
4-iminooxazolidin-2-one. After a series of test, 
4e and 4g were the compound having the most 
potent antiviral activity with EC50 = 0.21± 0.005 
and 0.033± 0.008µM respectively. Moreo-
ver, those compounds are safe towards the cell 
( CC50 > 100µM ). Thus, they can be used as base 
for EV71 drug therapy [41].

(f ) 8v, 8w and 8x: are alpha-keto-amid inhibitors 
against EV71 3Cpro . Zeng et  al. noticed that the 
pivotal function of 3Cpro makes it the ideal target 

to fight against EV71 infection. Then, they syn-
thesized several alpha-keto-amids as 3C inhibi-
tors via Passerini reaction. Hence, the compounds 
8v, 8w and 8x were exhibiting the most potent 
antiviral activity against enterovirus 71 with 
EC50 = 1.32± 0.26, 1.88± 0.35 and 1.52± 0.31µM 
respectively. Nevertheless, those compounds should 
be more improved and studied in order to contrib-
ute for EV71 drug discovery which is currently in 
need [42].

Non‑peptidyl compound: DC07090
Recently identified as novel small potent molecule 
3C inhibitor, it is a non-peptidyl compound designed 
by docking-based virtual screening and able to bind 
with 3C through its binding site and reversible inhib-
its its protease activity at EC50 = 22.09± 1.07µM . 
Besides, DC07090 has a very low cytotoxicity rate 
(CC50 > 200µM) which makes it an attractive com-
pound for further drug development [43].

Flavonoids
Flavonoids, originally synthesized by the plants as abi-
otic stresses: in order to protect themselves against ultra-
violet radiation, pathogens and herbivores are a group 
of natural compounds largely distributed in fruits, veg-
etables, tea, soy foods and herbs. Most importantly, they 
have huge therapeutic bioactivities: anti-oxidative, anti-
inflammatory and antiviral properties. Researchers used 
them as a base of drug and dietary supplement in sev-
eral diseases [44]. They present an attractive therapy for 
Enterovirus 71 due to their low toxicity towards host cells 
and their strong antiviral activity. 

(a) Luteoloside: is a flavonoid distributed mainly in 
Lonicera japonica, plant used in traditionnal Chi-
nese medicine, and has got broad activities such 
as anti-microbial, anti-cancer and antiviral activ-
ity against influenza virus, human rhinovirus, 
coxsackievirus B4 and enterovirus 71. The real 
mechanisms against EV71 remain unknown and 
need further deep to elucidate but it is sure that it 
blocked the pathway at 3C protease activity stage, 
IC50 = 0.36mM with a selectivity index of 5.3 
according to the investigation of Cao et  al. There-
fore, it is an excellent candidate for drug develop-
ment [45].

(b) Ouercetin: is a member of the flavonol subgroup 
of flavonoid found in many plants, fruits, grains 
and vegetables with anti-inflammatory, anti-cancer 
and anti-viral properties. It is probably one of the 
latest 3C inhibitor tested. Without toxicity towards 
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the cells, our group’s recent finding reveals that 
quercentin exhibits a prominent effectivity against 
the protein 3C of enterovirus 71 by binding its sub-
strate-binding pocket. Moreover, quercentin seems 
to have a preventive action. Indeed, cells pre-treated 
by quercetin present a high survival rate when 
infected by EV71 virus. Consequently, quercetin 
may be used both in preventive and in therapeutic 
application [46]. Therewith, a drug library compos-
ing of 1430 FDA approved drugs were previously 
screened from our laboratory. Interestingly, we 
found that the compound 3 had significantly anti-
EV71 effect among them. Further mechanism study 
revealed that it targeted viral 3 C protease and block 
viral replication (unpublished data).

(c) Diisopropyl Chrysin-7-i1 Phosphate (CPI): is a 
phosphate ester of chrysin, a natural flavonoid 
found in many plants. CPI is able to bind in the 
pocket site of hydrophobic and polar residue of 3C 
protease like LEU4- 8, SER-I I I, MET-112. PHE-113 
and PRO-115 and inhibits the protease activity at 
EC50 = 4.03mM . Indeed, 3Cpro is unable to cleave 
human interferon regulator factor 9(IRF9) in the 
presence of CPI [47].

siRNA
siRNA is a powerful tool which can be used to target a 
specific gene in order to suppress it. Small interfer-
ing RNA therapeutics has been explored against several 
human viral infections including Enterovirus due to its 
specificity and promising effect both in-vitro and in-vivo 
[48]. Indeed, siRNA recognize, bind and degrade the tar-
get mRNA. It is a challenging strategy by the potential 
risk of mutation, inflammation or immune responses. 
However, Yang et al. showed that there is any toxicity of 
the siRNA targeted 3Cpro and 3Dpol during their inves-
tigation. They have designed a novel minicircle vector 
through 3Cpro and 3Dpol sequence available in Genbank. 
In fact, the siRNA did not affect the growth and viabil-
ity of the cell. Moreover, it has reduced the protein lev-
els to 10.8± 6.7% , the viral mRNAs to 12.4 ± 1.75% and 
the progeny virion production to 15% in infected cells. 
More importantly, it has protected the infected-suckling 
mice of a significant weight loss and hind limbs paralysis. 
Hence, further investigation must be conducted about 
silencing gene strategy within using 3Cpro as target [49].

Discussion
The unavailable of approved clinical drug makes the find-
ing of a potent compound against EV71 really impor-
tant. 3Cpro is an essential protein for EV71 life cycle and 
infection, moreover, it has strict subtract and does not 

have a lot of homologues in mammalian cells [35]. Thus, 
it is an excellent and attractive target for development 
of potent drugs. In this review, we summarized several 
classes of compound recently screened and also rupin-
trivir which is the drug of reference against 3Cpro . Actu-
ally, rupintrivir and analogues are considered as the most 
potent 3Cpro inhibitors. However, NK-1.8k has almost 
the same potency and efficiency as rupintrivir (Table 1), 
and as more stable, it can take the place of rupintrivir as 
archetype of 3Cpro inhibitors. In fact, peptidomimetic 
compounds represent the most potent class with the 
minimal effective concentration (180  nM to 2.89  μM, 
Table  1). It might be due to the fact that they are syn-
thetically designed to fit in the 3Cpro active pocket. Nev-
ertheless, flavonoids class, which is composed of active 
compounds from plants, has satisfactory antiviral activ-
ity as well. Indeed, nowadays, the trend of using bioac-
tive compounds as drug candidates is done more and 
more, because of their broad biological and pharmaco-
logical activities, their availability and safety towards 
the host cells. Besides, the screening of non-peptidyl 
compound has been tempted but only DC07090 among 
50 other compounds has given a satisfactory result [43]. 
Peptidomimetic compounds might be more potent and 
interesting than non-peptidyl-compounds. Hence, deep 
investigation, mainly in an appropriate animal model, 
should be done for luteoloside, quercentin and CPI which 
could be approved as EV71 therapy; while more and 
more peptidomimetic compounds should be designed 
and/or improved by using the revelation of 3Cpro struc-
ture as reference. Following the drug screening work, the 
69th residue of 3Cpro , which plays important role in con-
ferring EV71 resistance, could be investigated in order 
to make sure that the virus will not develop a resistance 
mutation toward the potent drug as investigated by 
Wang et al. [24]. Finally, the last recent strategy is the use 
of RNAi. In fact, there are few investigation about siRNA 
as therapy against EV71 infection; however, it has been 
successful against a wide range of viruses: Human immu-
nodeficiency virus, hepatitis B/C virus, Influenza virus 
[50–53]. Therefore, even if it is a challenging technique, 
investigating this strategy is worth it.

Conclusion
Coupling an effective vaccine and drugs against Enterovi-
rus 71 is the most prominent manner to eradicate EV71 
infection. The prevention will be secure by the vaccine 
and the treatment by an effective drug. However, the drug 
progress has not been as developed as for vaccines. In fact, 
currently only a surveillance is set up to control the disease. 
EV71 is a threat for children’s life; therefore, the screening 
of an effective drug is quite indispensable as soon as pos-
sible. For that, 3Cpro represent an excellent target due to 
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the several key functions that it plays in both virulence and 
interaction of the virus to the host. More 3Cpro inhibitors 
should be exploited. Besides, as 3Cpro and 2Apro play role 
in early stage of the viral replication through cleaving the 
EV71 polyprotein, a combination of 2Apro and 3Cpro inhib-
itors in order to act in a synergetic manner may represent a 
valuable strategy. Indeed, the 3C X-ray structure is already 
defined so it would promotes further studies of its protease 
activity inhibitions by a compound. Meanwhile, all drugs 
screening must be tested in an appropriate animal model 
which will be compare to the  in-vitro screening in order 
to achieve the goals of using it as treatment against EV71 
infections.
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