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Abstract

With population growth and economic development, the agricultural sector is facing the challenge to produce more food with less
water. Crop water productivity (CWP) is important for understanding water–food relationships. It also provides a basis for the assess-
ment of water use efficiency embodied in global food trade. However, traditional methods are not sufficient for estimating CWP on a
global scale considering large spatial and temporal variations across different geographical locations. In this paper, a GIS-based EPIC
model (GEPIC) is developed and tested to estimate wheat (Triticum aestivum L.) yield and CWP at a grid resolution of 30 0 on the land
surface. A comparison between simulated yields and FAO statistical yields in 102 countries over 10 years shows a good agreement. The
simulated CWP is also mostly in line with the CWP reported in the literature.

The simulation results show that compared with rainfed wheat, irrigated wheat has higher frequencies for high CWP (>0.8 kg m�3)
and lower frequencies for low CWP (<0.8 kg m�3). This is likely because irrigation can provide timely water supply to crop development
and the management of irrigated crops is usually more intensive than in rainfed production. A strong linear relation is found between
CWP and yield. High wheat yield and CWP appear in the European countries, especially those in western and northern Europe. Low
wheat yield and CWP are seen in most African countries. The simulation using GEPIC, however, shows that wheat yield and CWP in
many African countries could increase substantially with sufficient water supply and fertilizer application. Variations in CWP across
countries suggest that global water use could be reduced through food trade. Calculations indicate a saving of 77 · 109 m3 of water
in 2000 through international wheat trade as a result of relatively high CWP in major exporting countries. However, the simulation
results also suggest that an overall improvement in CWP through better crop management practices in local areas could make a greater
contribution to the reduction in global water use.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Water is essential for both the human society and the
ecological systems that humans rely on. But this essential
resource is finite. With the population growth and eco-
nomic development, water has become increasingly scarce
in a growing number of countries and regions in the world.
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(J. Liu).
As the largest water user, the agricultural sector is facing a
challenge to produce more food with less water. This
requires an increase in crop water productivity (CWP),
which is defined as the marketable crop yield over actual
evapotranspiration (ET) (Kijne et al., 2003; Zwart and Bas-
tiaanssen, 2004). CWP is a function of many factors like
the water vapour pressure deficit of the atmosphere, soil
fertility, irrigation, pest and disease control. As a rule,
any management factors that increase crop yield also
increase CWP because evapotranspiration is generally less
responsive than yield to the changes in these factors.
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CWP is important for understanding water–food relation-
ships. It is also a basis for assessing water use efficiency
through the trade of food in the virtual water form, both
at the international and intra-national level. Introduced
by Allan (1998), ‘‘virtual water’’ describes the amount of
water consumed in the production process of a product.
The concept of virtual water implies that water scarce
countries could mitigate water scarcity by importing water
intensive food. In recent years, there have been many stud-
ies of virtual water trade and relevant issues at global,
regional and national levels (Hoekstra and Hung, 2002,
2003; Yang and Zehnder, 2002; Yang et al., 2003, 2006;
Oki et al., 2003; Chapagain and Hoekstra, 2004; World
Water Council, 2004; Fraiture et al., 2004; Ramirez-Vallejo
and Rogers, 2004; Wichelns, 2001; Liu et al., in press;
Chapagain et al., 2006). These studies have contributed
greatly to the understanding of water–food relations and
the roles of food trade in balancing local and national
water budgets. Globally, water resources may be used more
efficiently when food flows from the countries with high
CWP to the countries with low CWP. With the increasing
integration of the world economy, there is an emerging
need to support water and food policy formulation and
decision making at the global level. A systematic tool that
is capable of estimating CWP on a global scale and at high
spatial resolution would be very useful for this purpose.

In the literature, three methods have been applied to
estimate CWP: ‘‘rule of thumb’’, field experiments, and
crop growth models. The ‘‘rule of thumb’’ method assumes
the CWP as a roughly constant value. This method has
been applied in many virtual water related studies. A com-
monly used approximation is that 1 m3 of water can
roughly produce 1 kg of cereal, or around 1 kg m�3 of
CWP for cereal (Allan, 1998; Yang and Zehnder, 2002).
This method allows a quick estimation of CWP but suffers
from inaccuracy in explaining local variations. In field
experiments, CWP is determined by measuring seasonal
crop ET and crop yield. Such experiments are time con-
suming, costly and cannot be easily extrapolated to other
seasons and geographic locations (Ines et al., 2002). With
crop growth models, ET and crop yield can be simulated
simultaneously; hence, CWP can be estimated. However,
most existing crop growth models are mainly used for point
or site specific applications. There is a lack of models that
are suitable for global scale applications accounting for
variations in local conditions across regions.

Integrating crop growth models with a Geographic
Information System (GIS) provides a way to increase the
range of applicability of crop growth models. Combined
with the powerful function of spatial data storage and
management in GIS, a crop growth model may be extended
to address spatial variability of yield and ET as affected by
climate, soil, and management factors. There have been
some attempts to integrate crop growth models with GIS
(Curry et al., 1990; Thornton, 1990; Vossen and Rijks,
1995; Rao et al., 2000; Priya and Shibasaki, 2001; Ines
et al., 2002; Stöckle et al., 2003). However, a GIS-based
model for CWP simulation on a global scale has not been
developed prior to this study.

In the present paper, we develop and test a GIS-based
EPIC model to simulate yield and CWP at the resolution
of 30 0 with global coverage. Here GEPIC is also used to
estimate potential yield and CWP assuming sufficient water
and fertilizer supply, holding other factors constant. The
paper ends with an estimation of the magnitude of global
virtual water flows and water savings embodied in the
international wheat trade, and a potential reduction in glo-
bal water use through improved water and fertilizer man-
agement taking the year 2000 as reference.

2. The EPIC model

2.1. The selection of the EPIC model

To satisfy the objectives of this study, a crop growth
model needs to possess the following characteristics: flexi-
bility for the simulation of different crops under a variety
of climatic conditions, ability to simulate ET and yield,
availability of and easy access to the model, minimum data
requirements, and technical feasibility for the integration
with a GIS. The following models were considered and
compared: DSSAT, WOFOST, CropSyst, YIELD, CEN-
TURY, CropWat, APSIM, and EPIC. DSSAT does not
provide one unified model to simulate different crops;
instead, it brings together a number of crop models for spe-
cific crops (IBSNAT, 1989). Crop growth models like
APSIM, CropWat and CropSyst are not suitable for simu-
lating rice because the rice parameters are not well cali-
brated or because rice is not included (Keating et al.,
2003; Confalonieri and Bocchi, 2005). The WOFOST
model is sophisticated in describing crop physiology, thus
needs detailed input data (Monteith, 1996). CENTURY
is focused on element and material cycles. It is more specif-
ically designed for soil processes, such as organic matter
decomposition, nitrification, and denitrification (Zhang
et al., 2002).

Compared to the other models, the EPIC model uses a
unified approach to simulate more than 100 types of crops
(Williams, 1995; Wang et al., 2005). It has been successfully
applied in simulating crop yields for various combinations
of weather conditions, soil properties, crops, and manage-
ment schemes in many countries all over the world. Wil-
liams et al. (1989) tested the EPIC model for the yields of
wheat, corn, rice, soybean, corn soybean and sunflower
at several US locations and on sites in Asia, France, and
South America, and concluded that the difference between
simulated and measured yields was always within 7% of the
average measured yields. Bernardos et al. (2001) demon-
strated that the estimated yield trend by the EPIC model
superimposed well with the recorded yield trend for wheat
(r2 = 0.63) and maize (r2 = 0.71) during a 93-year period
(1907–1999) in the Argentine pampas. Priya and Shibasaki
(2001) found only small differences between simulated and
predicted wheat and maize yields in Bihar, India. More
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detailed description of the EPIC application in simulating
crop yields can be found in Gassman et al. (2005). Besides
the wide application and good performance, EPIC is a
public domain software. It can be downloaded with its
source code free of charge (http://www.brc.tamus.edu/epic/
index.html). Furthermore, there have been some attempts
to integrate EPIC with GIS, such as Spatial-EPIC for crop
production simulation at the national level in India (Priya
and Shibasaki, 2001) and EPIC-View for sustainable farm
management practices (Rao et al., 2000). The data required
by EPIC are relatively minimal (Dumesnil, 1993). Given all
these advantages, EPIC was selected for further develop-
ment under the framework of this study.

2.2. Methods for estimating crop yield, ET, and CWP in

EPIC

Developed by the USDA-ARS and TAES, the EPIC
model (Environmental Policy Integrated Climate, origi-
nally known as Erosion Productivity Impact Calculator)
uses a daily time step to simulate the major processes that
occur in soil-crop-atmosphere-management system, such as
weather, hydrology, nutrient cycling, tillage, plant environ-
mental control and agronomics. In EPIC, potential crop
yield is simulated based on the interception of solar radia-
tion, crop parameters, leaf area index (LAI) and harvest
index (HI). The daily potential growth is decreased by
stresses caused by water, nitrogen and phosphorus deficien-
cies, extreme temperatures, and poor soil aeration. EPIC
uses radiation-use efficiency in calculating photosynthetic
production of biomass. Intercepted photosynthetic active
radiation is estimated with a Beer’s law equation (Monsi
and Saeki, 1953). Potential increase in biomass for a day
is estimated using Monteith’s approach (Monteith, 1977).
Simulated potential biomass is adjusted daily for stress
from five factors (water, temperature, nitrogen, phospho-
rus and aeration) in proportion to the extent of the most
severe stress during that day. Crop yield is defined as the
marketable part of the total above ground biomass pro-
duced. It is estimated by multiplying the above-ground bio-
mass at maturity by a water stress adjusted harvest index
for the particular crop. In our study, a fresh yield is calcu-
lated using a moisture content of 14% in wheat seeds as
suggested by Bessembinder et al. (2005). The fresh yield
is estimated by dividing the dry yield by 0.86.

The EPIC model offers five methods for estimating
potential evapotranspiration: Hargreaves (Hargreaves and
Samani, 1985), Penman (Penman, 1948), Priestley–Taylor
(Priestley and Taylor, 1972), Penman–Monteith (Monteith,
1965), and Baier–Robertson (Baier and Robertson, 1965).
When wind speed, relative humidity, and solar radiation
data are not available, the Hargreaves or Priestley–Taylor
methods provide options that give realistic results in most
cases. In this study, the Hargreaves method was chosen
to estimate potential evapotranspiration. The Hargreaves
method estimates potential evapotranspiration as a func-
tion of extraterrestrial radiation and air temperature. The
actual ET is the sum of transpiration and evaporation.
The EPIC model computes evaporation from soil and tran-
spiration from plants separately by an approach similar to
that of Ritchie (1972). Detailed description on the EPIC
model can be found in Williams (1995).

Crop water productivity is defined as the crop yield over
actual evapotranspiration:

CWP ¼ Y act

ET act

ð1Þ

where CWP is the crop water productivity in kg m�3, ETact

is the actual seasonal crop water consumption in m3 ha�1,
and Yact is the actual crop yield in kg ha�1.

There are a number of definitions of CWP depending on
the specific aim, stakeholder interest, and scale under con-
sideration (Molden, 1997). The definition with respect to
crop yield and ET is a valuable index for judging the water
productivity for a specific crop variety under various agro-
nomic practices. It is useful to compare the water produc-
tivity in different regions for the same crops, the water
productivity of different crops in the same region, and the
water productivity for other possible uses. ET is the total
water consumption that will no longer be available for uses
in an agricultural system. By integrating crop yield and ET
into one concept, CWP can answer the question of how
much food can be typically produced by consuming a unit
of water resources. This concept is particularly useful in
optimizing water uses among different agricultural sectors
in water-scarce regions.

ET is composed of two factors, transpiration and evap-
oration. Transpiration is the water flow that is used for
crop growth. Since on a local scale, there is a certain equi-
librium and interdependency between the water taken up
by the roots of a plant and the water in and on the soil
in close vicinity of the plant, a separation between the
water to be transpired through the plant and the water
directly evaporated into the atmosphere close to the plant
has little practical meaning. Thus, it makes sense to define
crop water productivity using ET rather than solely tran-
spiration (Zwart and Bastiaanssen, 2004).

3. Integration of EPIC with GIS – The GEPIC model

Loose coupling and tight coupling are two generally
used approaches to integrate simulation models with GIS
(Sui and Maggio, 1999; Huang and Jiang, 2002). The loose
coupling approach relies on the transfer of data files
between GIS and simulation models (Huang and Jiang,
2002). In contrast, the tight coupling approach is to
develop models within a GIS (Huang and Jiang, 2002).
In this study, the loose coupling approach was used mainly
to avoid much redundant programming.

The GIS software ArcGIS (Version 9.0) was selected for
the development of the GEPIC model. ArcGIS is used as
input editor, programmer and output displayer. Visual
Basic for Applications (VBA) is the main computer lan-
guage used by the GEPIC model to develop the user inter-
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face, access input data, generate EPIC required input files,
control the execution of the EPIC model, create output
data, and visualize the output maps. VBA is a simplified
version of Visual Basic and is embedded in ArcGIS. VBA
can use the ArcGIS Desktop’s built-in functionalities, mak-
ing the programming much easier.

Some features of UTIL (Universal Text Integration
Language) are used in the process of transferring raw input
data into EPIC required inputs. UTIL is a data file editor
that comes with the EPIC model, and can edit the EPIC
specific input data files by executing a series of com-
mand-lines (Dumesnil, 1993).

The steps of the development of the GEPIC model are
illustrated in Fig. 1. Input data are first added into GEPIC
in terms of GIS raster datasets. Basic ‘‘GIS input datasets’’
include maps of DEM (Digital Elevation Model), slope,
soil, climate, land use, irrigation and fertilizer. Climate
and soil maps show the ‘‘code number’’ of the climate
and soil files in each grid. These code numbers are con-
nected with corresponding climate and soil files. The land
use map indicates different land use types, including irri-
gated and rainfed agriculture. Maps of DEM, slope, irriga-
tion, and fertilizer show the real values of elevation (m),
slope (dimensionless), maximum annual irrigation (mm),
and maximum annual fertilizer application (kg ha�1).

After adding the raster ‘‘GIS input datasets’’ into
GEPIC, an ‘‘input data translation module’’ reads and
writes input information to a ‘‘text input file’’. In the text
input file, each line stands for one simulated grid, and con-
sists of latitude, longitude, elevation, slope, land use, soil
code, climate code, maximum annual irrigation, and max-
imum fertilizer application. The information is then used
Fig. 1. The schematic representation of
to generate specific ‘‘EPIC input files’’ with the help of a
‘‘UTIL’’ program. This process is achieved by writing
command lines into a ‘‘batch file’’. The batch file consists
of two types of command lines: UTIL command line, and
EPIC executive command line. UTIL command lines are
used to edit specific ‘‘EPIC input files’’, and EPIC execu-
tive command lines control the running of the EPIC
model. By executing the batch file, GEPIC runs the EPIC
model for each simulated grid one by one. After one sim-
ulation, a set of ‘‘EPIC output files’’ are generated. With
an ‘‘output data translation module’’, output variables,
such as yield, evapotranspiration, crop water productivity,
are written into a ‘‘text output file’’. Each line of the ‘‘text
output file’’ presents latitude, longitude, and output vari-
ables for one simulation. This output file is used to gener-
ate ‘‘GIS output maps’’, such as yield, ET, and CWP
maps. These maps can be visualized in GEPIC and can
be edited by the user.

The GEPIC model has two unique advantages. First, it
can estimate crop yield, ET, and CWP by considering the
influencing factors with a flexible spatial scale ranging from
field to catchment to national and global. Second, it has an
easy to use Graphical User Interface to access GIS data, to
conduct the simulation, and to visualize the results.

4. Simulation of yield and ET with the GEPIC model

The simulation of yield and ET is conducted at a
resolution of 30 0 (about 50 km · 50 km in each grid
near the equator), covering the whole world (from lon-
gitude 180 �W to 180 �E and from latitude 90 �N to
90 �S).
the integration of EPIC with GIS.
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4.1. Data source, database development and simulation

results

Six types of input data are used for the GEPIC model:
(1) information on location (latitude, longitude, DEM
and slope), (2) climate data, (3) soil physical parameters,
(4) land use data, (5) plant parameters, and (6) manage-
ment data, such as irrigation and fertilizer application.

The DEM data are obtained from the 1-km resolution
(3000) digital elevation model GTOPO30 of the United
States Geological Survey (USGS) (EROS Data Center,
1998). Terrain slopes are from the 1-km resolution (3000)
HYDRO1K digital raster slope map, which defines the
maximum change in the elevations between each cell and
its eight neighbors (USGS, 2000). Both the DEM and slope
maps are transformed into 30 0 maps, in which the value of
each grid is equal to the averages in the corresponding
higher resolution maps.

Actual daily weather records may be used, or EPIC can
generate daily weather using a stochastic weather generator
[described by Richardson and Nicks (1990)]. Inputs to the
weather generator include average monthly temperature,
precipitation, solar radiation, relative humidity, and wind
speed. In this study, the daily maximum and minimum tem-
peratures and precipitation data are derived from the Global
Daily Climatology Network (GDCN) (Version 1.0) (Glea-
son et al., 2002). The GDCN contains daily precipitation
and maximum and minimum temperature for more than
32,000 stations worldwide for the period 1977 to 1993. Daily
climate data from 1994 to 2004 is downloadable from the
website of the National Climate Data Center (NCDC)
(www.ncdc.noaa.gov). Suitable climate stations (11,729 sta-
tions) were selected. Stations covering all daily climate data
from 1977 to 2004 were considered ‘‘suitable’’. The EPIC
specific monthly statistical climate data were estimated based
on the daily climate data, such as average monthly maxi-
mum/minimum temperature, monthly standard deviation
of maximum/minimum daily temperature, average monthly
precipitation, monthly standard deviation of daily precipita-
tion, monthly skew coefficient for daily precipitation, and
average monthly number days of rain. These statistical
monthly data are used to generate the missing daily data
where necessary. Average daily relative humidity, sunshine
hours, and wind speed per month were taken from the
FAO CLIMWAT database, which includes a total of 3262
meteorological stations from 144 countries (FAO, 1993).
Solar radiation was estimated from sunshine hours (Ang-
ström, 1956). The climate parameters of each grid are
assumed the same as those in the ‘‘closest’’ climate stations.
The boundary of a region within which all the grids share the
same set of climatic variables is created with a method of
Thiessen Polygons (Isaaks and Srivastava, 1989). We are
aware that climatic factors influencing CWP may change
within very short distances, and different interpolation pro-
cedures can result in different simulation results. Comparing
the results from different interpolation procedures may be
helpful, but it is beyond the scope of this study.
A minimum of seven soil parameters is required for sim-
ulation: depth, percent sand, percent silt, bulk density, pH,
organic carbon content, and fraction of calcium carbonate.
Other soil parameters could either be inputs or estimated
by EPIC. Soil data of depth and texture (percent sand
and silt) are obtained from the Digital Soil Map of the
World (DSMW) (FAO, 1990). DSMW is derived from
the FAO-UNESCO Soil Map of the World (SMW) at an
original scale of 1:5 million, and presents soil parameters
in grid-cells of a 5 0 latitude/longitude resolution. Soil pH,
organic carbon content, and calcium carbonate fraction
are from ISRIC-WISE International Soil Profile Data Set
(Batjes, 1995), which presents soil parameters on spatial
soil data layers on a 30 by 30 0 grid. Bulk density is calcu-
lated with pedotransfer function (Saxton et al., 1986) based
on the thickness and texture in each soil layer.

Land use data are from Global Land Cover Character-
ization (GLCC), which is a 1-km resolution (3000) global
land cover generated by USGS (Reed, 1997). GLCC
divides the world into 24 land use classes, including rainfed
and irrigated crop land. In this study, the 3000 global land
cover map was converted into a 30 0 map, in which each
grid shows the dominant land use type. The simulation
was performed for all the dryland cropland and pasture,
and irrigated cropland and pasture grids in the global land
use map. As pointed out by one of the referees of this
paper, locating the growing areas of wheat precisely is
important with regard to climatic conditions, edaphic con-
ditions and management practices which are key factors
influencing CWP. The crudeness of the land use data could
lead to errors in the simulation results. However, prior to
the availability of detailed information on global wheat dis-
tribution, the use of the GLCC land cover data is a practi-
cal compromise.

The irrigated area data were obtained from a digital glo-
bal map of irrigated areas generated by the Center for
Environmental Systems Research, University of Kassel
(Döll and Siebert, 2000; Siebert et al., 2002). This map
shows the total area percentage that is equipped for irriga-
tion in each grid. It has two versions with resolutions of 30
and 5 0. The 30 0 map is used in this study. In addition,
AQUASTAT (FAO, 2005a) provides the data for agricul-
tural water withdrawal and irrigation efficiency in individ-
ual countries. The volume of irrigation water delivered to
the crop field, or irrigation water use, can be calculated
by multiplying agricultural water withdrawal by irrigation
water use efficiency. We assume that, in each country, the
irrigation water use is equally distributed among the area
equipped for irrigation in the global irrigation map. The
annual irrigation depth is calculated by dividing the irriga-
tion water use by total irrigation area in individual
countries.

The data for total fertilizer consumption and total hect-
ares of arable and permanent cropland of each country are
available from FAOSTAT (FAO, 2005b). Average fertil-
izer use (kg ha�1) during 1977 and 2004 for each country
was estimated by a country’s total fertilizer consumption

http://www.ncdc.noaa.gov
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divided by its total hectares of arable and permanent crop-
land. Also, the allocation of fertilizer to crops is influenced
by the importance of specific crops and the intensity of pro-
duction. Evidence shows that irrigated crops receive higher
amounts of fertilizer than rainfed crops and important
crops receive more fertilizer than less important crops
(Fischer, 2005). The date limitation, however, impedes a
further specification of fertilizer application for individual
crops in this study.

Crop parameters of the Wheat (Triticum aestivum L.)
are obtained from the default crop parameter file in EPIC.
One set of parameters for spring wheat and one set of
parameters for winter wheat were applied. We assumed
that spring wheat was planted in regions with latitudes
between 30 �S and 30 �N and winter wheat was planted
in regions with greater latitudes. Crop calendar data are
obtained from FAO (2005c), which provides the data for
90 countries. For the countries that are not included in
FAO (2005c), the calendar data from their neighbouring
countries with the nearest latitudes are used.

Wheat yields, ET, and CWP were simulated on a global
scale over the period 1977–2004 using GEPIC. The result-
ing rainfed and irrigated wheat yields for the year 2000
were combined and are shown in Fig. 2.

4.2. Test of the GEPIC performance

The lack of statistical yield on a comparable spatial res-
olution makes grid to grid comparison between statistical
yields and simulated yields impossible. In order to quanti-
tatively assess the performance of the GEPIC model, the
simulated yields in individual grids are aggregated into
national averages. The GEPIC model is tested by compar-
ing the simulated national average wheat yields with the
Fig. 2. Global map of simul
statistical wheat yields from FAOSTAT (FAO, 2005b).
Wheat yield records exist in 105 countries. By excluding
three countries (Mauritania, Mozambique, and Honduras)
with evident yield errors, 102 countries were selected for
comparison.

The national average yield was calculated with the fol-
lowing equation:

Y ½i� ¼
PN ½i�

j¼1Y ½i; j� � A½i; j�
PNðiÞ

j¼1 A½i; j�
ð2Þ

where Y ½i� is the national average yield of wheat for coun-
try i, Y[i, j] is the wheat yield in the jth grid of country i,
A[i, j] is the wheat planting area in the jth grid of country
i, N[i] is the total number of simulated grids in country i.

Several statistics were used to evaluate the model perfor-
mance: coefficient of determination (R2), slope and inter-
cept of the regression function, Nash–Sutcliffe efficiency
(EF) (Nash and Sutcliffe, 1970), normalized mean square
error (NMSE) (Hanna, 1988), and index of agreement (d)
(Willmott, 1982). EF compares the simulated values with
the mean of the observed values. A positive value indicates
a better predictor than the mean of the observed values.
NMSE ranges from 0 to 1, and a value of 0 implies perfect
agreement. Generally, a model with NMSE of 0.4 or lower
is considered good (Hanna, 1988). The index of agreement
(d) ranges from 0 to 1, and a value of 1 implies perfect
agreement.

The statistical and simulated national average yields and
the difference between them are reported in Table 1. A
graphical comparison between simulated and FAO statisti-
cal wheat yields is depicted in Fig. 3 for 102 countries dur-
ing 1995–2004. The indices for testing model performance
are given in Table 2.
ated wheat yield (2000).



Table 1
National averages of statistical yields (Ysta), simulated yields (Ysim),
simulated crop water productivity (CWP), and values of crop water
productivity in literature (CWP*)

Country Ysta

(kg ha�1)
Ysim

(kg ha�1)
Ydif

a

(%)
CWP
(kg m�3)

CWP*b

(kg m�3)
CWPdif

c

(%)

Albania 3046 3625 19 0.926 – –
Algeria 919 1155 26 0.319 0.368 15
Angola 1739 1652 �5 0.557 0.382 �31
Argentina 2493 2855 15 0.531 1.355 155
Armenia 1706 1404 �18 0.491 0.627 28
Australia 1821 2356 29 0.646 0.630 �3
Austria 4469 4859 9 1.021 1.019 0
Azerbaijan 2322 2389 3 0.609 0.681 12
Bangladesh 2210 2912 32 0.742 0.710 �4
Belgium 7920 8377 6 1.704 0.856 �50
Bolivia 887 959 8 0.238 0.282 18
Bosnia 3229 1808 �44 0.619 0.426 �31
Botswana 1667 1645 �1 0.702 0.592 �16
Brazil 1559 2217 42 0.522 0.619 18
Bulgaria 2842 2518 �11 0.712 1.221 71
Burundi 677 941 39 0.339 0.214 �37
Cameroon 1333 1167 �12 0.431 0.483 12
Canada 2444 2529 3 0.855 0.671 �22
Chad 1434 1435 0 0.375 0.330 �12
Chile 3812 4046 6 0.801 0.693 �13
China 3738 3658 �2 0.790 1.449 83
Colombia 2142 2589 21 0.837 0.668 �20
Congo 1285 1494 16 0.407 0.385 �5
Croatia 4374 3558 �19 0.797 0.599 �25
Czech Rep 4209 3122 �26 0.946 0.847 �10
Denmark 7480 7820 5 1.733 1.497 �14
Ecuador 621 890 43 0.564 0.234 �58
Egypt 6342 6447 2 1.181 1.075 �9
Eritrea 594 600 1 0.581 0.140 �76
Ethiopia 1163 1141 �2 0.396 0.396 0
Finland 3601 3150 �13 0.693 0.785 13
France 7117 7191 1 1.449 1.117 �23
Georgia 1043 1410 35 0.548 0.688 25
Germany 7283 7394 2 1.471 1.326 �10
Greece 2539 2314 �9 0.536 0.824 54
Guatemala 2093 3156 51 1.052 0.500 �52
Hungary 3604 3190 �11 0.877 1.799 105
India 2779 2871 3 0.893 0.605 �32
Iran 1586 1666 5 0.563 0.342 �39
Ireland 9454 8625 �9 1.887 1.946 3
Italy 3213 4241 32 1.087 0.413 �62
Japan 3761 3421 �9 0.590 1.362 131
Jordan 1397 1400 0 0.302 0.276 �9
Kazakhstan 903 886 �2 0.487 0.453 �7
Kenya 1547 1634 6 0.461 0.469 2
Kyrgyzstan 2342 1491 �36 0.441 0.307 �30
Latvia 2704 1765 �35 0.380 1.642 332
Lebanon 2703 2694 0 0.480 0.609 27
Lithuania 3341 4547 36 1.025 1.706 67
Macedonia 2469 2645 7 0.548 1.001 83
Madagascar 2250 2443 9 0.676 0.861 27
Malawi 797 866 9 0.236 0.221 �6
Mali 2352 1987 �16 0.620 0.302 �51
Mexico 4936 4720 �4 0.983 0.938 �5
Moldova 1951 2027 4 0.442 1.218 176
Mongolia 777 1141 47 0.742 0.117 �84
Morocco 476 1556 227 0.418 0.218 �48
Myanmar 1167 1691 45 0.463 0.377 �19
Namibia 3429 5294 54 1.042 1.639 57
Nepal 1793 2194 22 0.584 0.530 �9
Netherlands 8359 8542 2 1.515 1.616 7

Table 1 (continued)

Country Ysta

(kg
ha�1)

Ysim

(kg ha�1)
Ydif

a

(%)
CWP
(kg m�3)

CWP*b

(kg m�3)
CWPdif

c

(%)

New
Caledonia

1667 1082 �35 0.659 0.691 5

New Zealand 6210 6412 3 1.305 1.445 11
Nigeria 1404 846 �40 0.335 0.281 �16
North Korea 848 1146 35 0.319 0.601 89
Norway 4533 4480 �1 1.126 1.255 11
Oman 3190 2788 �13 0.881 0.475 �46
Pakistan 2491 3377 36 0.907 0.304 �66
Paraguay 1381 1529 11 0.394 0.454 15
Peru 1288 1761 37 0.358 0.439 23
Poland 3227 4395 36 1.040 1.988 91
Portugal 1569 1633 4 0.394 0.470 19
Romania 2300 1990 �13 0.664 1.318 99
Russia 1614 1899 18 0.621 0.421 �32
Rwanda 642 788 23 0.160 0.219 37
Saudi Arabia 4264 4565 7 1.066 0.508 �52
Serbia 3150 3672 17 0.870 1.456 67
Slovakia 3095 3416 10 0.740 2.151 191
Slovenia 4249 4520 6 1.000 � �
South Africa 2843 2240 �21 0.504 0.732 45
South Korea 2545 2836 11 0.705 1.012 44
Spain 3100 3636 17 0.840 0.815 �3
Sudan 2327 2441 5 0.668 0.322 �52
Swaziland 1500 1485 �1 0.281 0.525 87
Sweden 5982 5990 0 1.727 1.282 �26
Switzerland 6132 6164 1 1.112 1.337 20
Syria 1850 2796 51 0.559 0.452 �19
Tajikistan 1184 1271 7 0.407 0.151 �63
Tanzania 1301 1175 �10 0.321 0.396 23
Thailand 667 541 �19 0.556 0.197 �65
Tunisia 1173 1808 54 0.407 0.359 �12
Turkey 2235 2426 9 0.650 0.653 1
Turkmenistan 1643 1688 3 0.549 0.524 �5
Uganda 1714 1793 5 0.497 0.441 �11
Ukraine 1976 2199 11 0.563 1.389 147
United
Kingdom

8008 8886 11 1.799 1.996 11

USA 2826 2571 �9 0.810 1.178 45
Uruguay 2534 2516 �1 0.589 1.106 88
Uzbekistan 2605 3100 19 0.857 0.733 �14
Venezuela 369 447 21 0.360 0.106 �70
Zambia 6210 5584 �10 1.214 1.264 4
Zimbabwe 5391 4682 �13 1.053 1.279 21
World 2720 2939 8 0.798 0.750 �6

a Ydif is defined as (Ysim � Ysta)/Ysta · 100%.
b The values are estimated as the inverse of virtual water content from

Chapagain and Hoekstra (2004).
c CWPdif is defined as (CWP* � CWP)/CWP · 100%.
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The simulated yields and the statistical yields are quite
comparable. All the trend lines in Fig. 3 are close to the
1:1 lines. F-tests (the P value is higher than 99%) are highly
significant and R2 values are high (Table 2). The mean of the
R2 values in the 10 years is 0.86 with a S.D. of 0.05. All the
slopes are close to 1. The intercepts are small, and are not
significantly different from 0. The values of EF, NMSE,
and d also indicate a good performance of the model.

The statistical analyses indicate that the GEPIC model
performs well in simulating wheat yields throughout the
world.
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Fig. 3. Comparison between simulated wheat yields and FAO statistical wheat yields in 102 countries in the years 1995–2004.
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5. Estimation of crop water productivity

Based on the simulated yields and ET with GEPIC,
CWP can be estimated at the same spatial resolution.
The global map of CWP is shown in Fig. 4. It can be seen
that CWP differs significantly across countries and within
countries. In general, western European countries have rel-
atively high CWP values (>1.2 kg m�3), whereas most Afri-
can countries have low CWP (<0.4 kg m�3).

To our best knowledge, CWP has so far not been esti-
mated with such a high spatial resolution on a global scale.
This makes our effort unique, but also results in difficulties
in conducting a grid to grid comparison with other
researches. Two approaches are used for comparison:
aggregate the grid-based CWP to the national average val-
ues and compare them with the national average values
given by Chapagain and Hoekstra (2004); and compare
the simulated grid values of CWP with the measured values
on a number of sites reported in the literature.

The values of the simulated national average CWP
(marked as CWP in Table 1) are compared with those from
Chapagain and Hoekstra (2004) (marked as CWP* in
Table 1) for 98 countries. The results show that, in 55 coun-
tries (or more than half of the compared countries) the dif-
ference between CWP* and CWP is within the range of
30%. The world average water productivity of wheat is sim-
ilar in the two studies. The comparison, however, shows
large discrepancies in some countries notably the USA,



Table 2
Statistical index for the assessment of the model performance

Year R2 Slope Intercept EFa NMSEb dc

1995 0.85 1.00 0.37 0.77 0.08 0.95
1996 0.82 0.87 0.60 0.80 0.08 0.95
1997 0.83 0.97 0.37 0.77 0.08 0.95
1998 0.86 0.99 0.22 0.83 0.07 0.96
1999 0.83 1.00 0.28 0.78 0.09 0.95
2000 0.94 0.97 0.19 0.93 0.03 0.98
2001 0.90 0.96 0.10 0.90 0.04 0.97
2002 0.92 1.00 0.08 0.91 0.04 0.98
2003 0.80 0.92 0.40 0.77 0.10 0.94
2004 0.82 0.95 0.22 0.80 0.09 0.95
Mean 0.86 0.96 0.28 0.83 0.07 0.96

S.D. 0.05 0.04 0.16 0.06 0.02 0.01

a EF is Nash–Sutcliffe efficiency.
b NMSE is normalized mean square error.
c d is index of agreement.
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the largest exporting country in wheat. The USA had a
yield close to the world average level, corresponding to
the simulated CWP in our study which is also close to
the world average CWP (Table 1). In Chapagain and
Hoekstra (2004), the value of CWP* is more than 50%
higher than the world average CWP*. This value is likely
to be overestimated. The reason may be partly because
Chapagain and Hoekstra (2004) calculate CWP* with
country average climate data, which ignores the spatial
variations, leading to errors in the simulation results, espe-
cially in large countries like USA.

The simulated values of CWP from GEPIC were com-
pared with the on site measurements reported in the litera-
ture. Zwart and Bastiaanssen (2004) reviewed the measured
CWP values for irrigated wheat, rice, cotton, and maize at
the global level by using 84 literature sources with results of
Fig. 4. Global map of simulated crop w
experiments not older than 25 years. Our results are mostly
in line with the measured values (Table 3). Among 26 sites
listed, 19 sites or 73%, have simulated CWP values falling
into the minimum–maximum CWP ranges. However,
GEPIC fails to model CWP in some locations with high
measured CWP values, such as Wangtong and Quzhou in
China. This is not surprising. In this study, the country
average irrigation and fertilizer rates are used as input
parameters. Those high CWP sites may profit from an
above average level crop management. For example, in
Wangtong, the high CWP values may be partly due to
the intensive application of manure and straw mulching,
factors which are not specifically considered in this study.

The frequency distribution of CWP for wheat shows
obvious differences between irrigated and rainfed condi-
tions (Fig. 5). Irrigated wheat has generally higher frequen-
cies in the ranges of high CWP and lower frequencies in the
ranges of low CWP. An opposite situation is evident for
rainfed wheat. For the ranges with CWP higher than
0.8 kg m�3, irrigated wheat always has higher frequencies
of CWP; while for the ranges with CWP lower than
0.8 kg m�3, irrigated wheat has lower frequencies. In the
range from 0.8 to 1.2 kg m�3, the frequency of CWP of irri-
gated wheat is about 40% (this number is in agreement with
the value of 39% given by Zwart and Bastiaanssen (2004)
for irrigated wheat in the same range based on 412 experi-
mental points). The frequency of rainfed wheat is only
23%. In the range from 0.2 to 0.6 kg m�3, the frequency
of CWP of irrigated wheat is about 23%, while the fre-
quency of rainfed wheat is about 43%. The low CWP in
rainfed wheat production is partly due to water availability
restricting crop development. In irrigated fields, water can
be applied in times of deficiencies otherwise restricting
wheat growth. Especially in the critical periods of crop
ater productivity of wheat (2000).



Table 3
Comparison of the simulated CWP values with the measured CWP values in the literature

Location Minimum
(kg m�3)a

Maximum
(kg m�3)a

Median
(kg m�3)a

Simulated CWP
(kg m�3)b

Simulated CWP in the minimum–
maximum range?c

Parana, Argentina 0.55 1.49 1.04 0.65 Y

Merredin, Australia 0.56 1.14 0.95 0.82 Y

Merredin & Mullewa,
Australia

0.55 1.65 0.88 0.62, 0.82 Y

Benerpota, Bangladesh 0.52 1.34 0.91 0.99 Y

Quzhou, China 1.38 1.95 1.58 0.84 N

Xifeng, China 0.65 1.21 0.84 0.67 Y

Wangtong, China 1.49 2.67 2.23 1.14 N

Gansu Province, China 0.58 1.45 1 1.05 Y

Luancheng, China 1.07 1.29 1.26 1.23 Y

Yucheng, China 0.88 1.16 1.04 1.01 Y

Beijing, China 0.92 1.55 1.19 1.23 Y

Luancheng, China 1.28 1.82 1.63 1.23 N

West Bengal, India 1.11 1.29 1.19 0.87 N

Pantnagar, India 0.86 1.31 1.11 0.87 Y

Uttar Prades, India 0.48 0.71 0.64 0.51 Y

Karnal, India 0.27 0.82 0.67 0.49 Y

Pantnagar, India 1.06 1.23 1.1 0.87 N

Gilat, Israel 0.6 1.6 0.85 0.63 Y

Meknes, Morocco 0.11 1.15 0.58 0.48 Y

Sidi El Aydi, Morocco 0.32 1.06 0.61 0.45 Y

Faisalabad, Pakistan 0.7 2.19 1.28 0.71 Y

Tel Hadya, Syria 0.48 1.1 0.78 0.56 Y

Cukurova, Turkey 1.33 1.45 1.39 1.14 N

Yellow Jacket (CO),
USA

0.47 1.08 0.77 0.56 Y

Grand Valley(CO), USA 1.53 2.42 1.72 0.56 N

Tashkent, Uzbekistan 0.44 1.02 0.73 0.75 Y

a Data from Zwart and Bastiaanssen (2004).
b Data from this study.
c Y indicates the simulated CWP values are within the minimum–maximum range, while N indicates the simulated CWP values are out of the minimum–

maximum range.
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growth, application of irrigation can improve wheat yield
significantly.

Our simulation results do not show a clear division of
CWP between irrigated and rainfed fields, whereas Mo
et al. (2005) find such a division in frequencies between
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the two. This is largely due to the differences in scale and
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low yields and CWP values in rainfed fields. With irriga-
tion, both wheat yield and ET raise but yield increases
are more pronounced (Mo et al., 2005). Hence, the values
of CWP for irrigated wheat become much higher.

6. Discussion

6.1. Yield and CWP

The estimated national average crop yield and CWP
show a strong linear relation (R2 = 0.88) (Fig. 6). High
yields and CWP are seen in Europe, especially in Western
and Northern Europe. Most African countries have low
CWP and low wheat yields. The national average CWP
ranges from 0.160 kg m�3 in Rwanda to 1.887 kg m�3 in
S
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Fig. 7. Wheat yield vs. CWP under assumption o
Ireland. The difference is a result of many factors affecting
plant growth, such as the water vapor pressure deficit of
the atmosphere during the crop growing period, the avail-
ability of water when it is most needed, soil fertility, fertil-
izer application, general climatic conditions, etc. In general
the CWP differs for given agronomic practices and environ-
mental conditions. In some areas in Western European
countries, the simulated CWP values exceed 2 kg m�3

(Fig. 6). These numbers come close to the maximum when
there is no limitation of production by nutrients or reduc-
tion of production by the presence of weeds, pests and dis-
eases (Bessembinder et al., 2005).

In order to examine the effect of water availability and
fertilizer application on yield and CWP, a simulation was
performed using GEPIC with the assumption of sufficient
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Table 4
Potential yield (Yp), yield gap (Ygap) between Yp and actual yield (Ysta),
the percentage of Ygap to Yp (Ygap%), potential crop water productivity
(CWPp), CWP gap (CWPgap) between CWPp and actual crop water
productivity (CWP), and the percentage of CWPgap to CWPp (wheat,
2000)

Country Yp

(kg ha�1)
Ygap

(kg ha�1)
Ygap

(%)
CWPp

(kg m�3)
CWPgap

(kg m�3)
CWPgap

(%)

Albania 8223 5177 63 1.564 0.638 41
Algeria 7773 6854 88 1.391 1.072 77
Angola 5406 3667 68 1.668 1.111 67
Argentina 3000 507 17 0.600 0.069 12
Armenia 8008 6302 79 1.567 1.076 69
Australia 2796 975 35 0.702 0.056 8
Austria 8885 4416 50 1.707 0.686 40
Azerbaijan 7022 4700 67 1.768 1.159 66
Bangladesh 3246 1036 32 0.885 0.143 16
Belgium 9059 1139 13 1.751 0.047 3
Bolivia 5954 5067 85 1.323 1.085 82
Bosnia 8430 5201 62 1.610 0.991 62
Botswana 6859 5192 76 1.306 0.604 46
Brazil 6893 5334 77 1.411 0.889 63
Bulgaria 8725 5883 67 1.750 1.038 59
Burundi 5849 5172 88 1.544 1.205 78
Cameroon 5723 4390 77 1.388 0.957 69
Canada 8391 5947 71 1.567 0.712 45
Chad 1988 554 28 0.455 0.080 18
Chile 4056 244 6 0.850 0.049 6
China 6836 3098 45 1.414 0.624 44
Colombia 6285 4143 66 1.469 0.632 43
Congo 4919 3634 74 1.392 0.985 71
Croatia 8649 4275 49 1.617 0.820 51
Czech Rep 8989 4780 53 1.648 0.702 43
Denmark 12,645 5165 41 2.480 0.747 30
Ecuador 5070 4449 88 1.472 0.908 62
Egypt 6617 275 4 1.308 0.127 10
Eritrea 849 255 30 0.970 0.389 40
Ethiopia 8671 7508 87 1.658 1.262 76
Finland 4738 1137 24 1.030 0.337 33
France 9277 2160 23 1.737 0.288 17
Georgia 7880 6837 87 1.582 1.034 65
Germany 9992 2709 27 1.783 0.312 18
Greece 8722 6183 71 1.632 1.096 67
Guatemala 7584 5491 72 1.717 0.665 39
Hungary 8130 4526 56 1.521 0.644 42
India 3100 321 10 1.010 0.117 12
Iran 6209 4623 74 1.200 0.637 53
Ireland 9883 429 4 2.528 0.641 25
Italy 7903 4690 59 1.800 0.713 40
Japan 7174 3413 48 1.437 0.847 59
Jordan 7988 6591 83 1.386 1.084 78
Kazakhstan 6830 5927 87 1.467 0.980 67
Kenya 8370 6823 82 1.571 1.110 71
Kyrgyzstan 6408 4066 63 1.467 1.026 70
Latvia 3488 784 22 0.702 0.322 46
Lebanon 7233 4530 63 1.328 0.848 64
Lithuania 9637 6296 65 1.867 0.842 45
Macedonia 8604 6135 71 1.468 0.920 63
Madagascar 6022 3772 63 1.364 0.688 50
Malawi 7477 6680 89 1.600 1.364 85
Mali 2698 346 13 0.646 0.026 4
Mexico 5777 841 15 1.124 0.141 13
Moldova 7714 5763 75 1.466 1.024 70
Mongolia 5128 4351 85 1.027 0.285 28
Morocco 7058 6582 93 1.503 1.085 72
Myanmar 3437 2270 66 1.028 0.565 55
Namibia 6979 3550 51 1.309 0.267 20

Table 4 (continued)

Country Yp

(kg ha�1)
Ygap

(kg ha�1)
Ygap

(%)
CWPp

(kg m�3)
CWPgap

(kg m�3)
CWPgap

(%)

Nepal 4963 3170 64 1.439 0.855 59
Netherlands 11,099 2740 25 1.832 0.317 17
New

Caledonia
8849 7182 81 1.590 0.931 59

New Zealand 6985 775 11 1.400 0.095 7
Nigeria 5484 4080 74 1.518 1.183 78
North Korea 7051 6203 88 1.464 1.145 78
Norway 6202 1669 27 1.651 0.525 32
Oman 3384 194 6 1.235 0.354 29
Pakistan 2748 257 9 0.913 0.006 1
Paraguay 4851 3470 72 0.820 0.426 52
Peru 8033 6745 84 1.308 0.950 73
Poland 8461 5234 62 1.492 0.452 30
Portugal 9151 7582 83 1.848 1.454 79
Romania 8046 5746 71 1.761 1.097 62
Russia 7780 6166 79 1.728 1.107 64
Rwanda 12,081 11,439 95 2.058 1.898 92
Saudi Arabia 4558 294 6 1.081 0.015 1
Serbia 8034 4884 61 1.445 0.575 40
Slovakia 8224 5129 62 1.388 0.648 47
Slovenia 9246 4997 54 1.657 0.657 40
South Africa 7527 4684 62 1.409 0.905 64
South Korea 7134 4589 64 1.409 0.704 50
Spain 7545 4445 59 1.481 0.641 43
Sudan 2849 522 18 0.738 0.070 9
Swaziland 9047 7547 83 1.577 1.296 82
Sweden 11,634 5652 49 2.560 0.833 33
Switzerland 8093 1961 24 1.451 0.339 23
Syria 6843 4993 73 1.322 0.763 58
Tajikistan 5479 4295 78 1.147 0.740 65
Tanzania 6478 5177 80 1.567 1.246 80
Thailand 3027 2360 78 0.762 0.206 27
Tunisia 7209 6036 84 1.230 0.823 67
Turkey 8366 6131 73 1.439 0.789 55
Turkmenistan 4603 2960 64 0.977 0.428 44
Uganda 7107 5393 76 1.559 1.062 68
Ukraine 8515 6539 77 1.742 1.179 68
United

Kingdom
11,904 3896 33 2.605 0.806 31

USA 7791 4965 64 1.619 0.809 50
Uruguay 2600 66 3 0.700 0.111 16
Uzbekistan 5388 2783 52 1.099 0.242 22
Venezuela 3531 3162 90 0.902 0.542 60
Zambia 9189 2979 32 1.826 0.612 34
Zimbabwe 9189 3798 41 1.479 0.426 29

Actual yield and actual crop water productivity are the same as Ysta and
CWP respectively in Table 1.
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water and fertilizer supply, holding other factors
unchanged. The estimated yield and CWP values are pro-
vided in Fig. 7, and the detailed values for each country
are reported in Table 4.

Many countries in Europe, Africa, and North America
have advantages in achieving high wheat yield and high
CWP with sufficient water and fertilizer supply (Fig. 7
and Table 4). The highest CWP and yields are found in
UK, Denmark, Sweden and Ireland. The highest CWP in
these countries may be closely related to the vapor pressure
deficit of the air. There is a proportionally inverse relation
between vapor pressure deficit of the atmosphere and CWP
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(Bierhuizen and Slayter, 1965; Tanner and Sinclair, 1983).
The four countries have much lower vapor pressure deficits
compared to other countries (this has been verified by the
GEPIC model, but the data are not shown in this paper).
It is not surprising that they have the highest CWP. Most
European countries have the potential to achieve wheat
yields over 7000 kg ha�1 and CWP over 1.2 kg m�3. Com-
pared with Fig. 6, the gap between the currently achieved
yield and CWP and their potentials is relatively small. This
reflects the fact that in many European countries, water
and fertilizer supply, and other management factors, are
already in near-optimum conditions. In contrast, the large
gap appears in African countries. The results also show
that, except for Mali, Chad, Sudan and Eritrea, most Afri-
can countries have high potential wheat yield and CWP
(Fig. 7 and Table 4). Wheat yields could reach 5000 to
9000 kg ha�1 with CWP between 1.2 and 1.8 kg m�3, if
the water supply and fertilizer application were sufficient.
The high potential yields and CWP suggest that increasing
water and fertilizer supply would improve wheat produc-
tion in Africa, although other management factors may
also have to be improved. In the four exceptional countries,
biophysical conditions, e.g. the prevailing soils, may
restrict the growth of wheat, leading to low potential yield
and CWP even with sufficient water and fertilizer supply.
Fischer et al. (2002) show that the soil texture in the four
countries has partly constrained crop growth.

6.2. Virtual water flows embodied in the international wheat

trade

The variation in CWP has important implication for
global water resources utilization. On the global scale,
water can be saved through wheat trade when the flow is
from countries with high CWP to countries with low
CWP countries. The magnitude of the virtual water
through wheat trade is estimated in this section.

Virtual water volumes can be calculated by dividing
food trade volume by CWP in each country. For a country,
virtual water export (VWE) is calculated by dividing the
volume of wheat exports by the national average CWP of
this country. The global virtual water export (GVWE) is
equal to the sum of the VWE in all the exporting countries,
and it indicates the volume of virtual water leaving all the
exporters to the importers. Likewise, virtual water import
(VWI) is calculated by dividing the volume of wheat
imports by the national average CWP in the respective
importing countries. For those wheat-importing countries
that are not listed in Table 1, the global average CWP
for all the wheat-importers is used to calculate VWI. The
global virtual water import (GVWI) is equal to the sum
of the VWI in all the importing countries, and it indicates
the volume of virtual water that the importing countries
would have used to produce the amount of wheat imports
if no wheat were traded. In 2000, around 129 · 109 kg of
wheat (refers to the wheat equivalent, which includes wheat
and wheat flour) was traded in the international food mar-
ket (FAO, 2005b). The calculation shows that correspond-
ing GVWI and GWVE were 236 · 109 m3 and 159 ·
109 m3, respectively. The difference of 77 · 109 m3 repre-
sents the global water saving through wheat trade in the
year. The top five exporting countries (USA, Canada,
France, Australia, and Argentina) were responsible for
some 80% of the wheat export in 2000 (FAO, 2005b).
Except for Argentina, the other major exporting countries
all have CWP values higher than 0.8 kg m�3 (Table 1). In
contrast, the top five importing countries (Brazil, Italy,
Iran, Japan, and Algeria) have values of CWP lower than
0.6 m3 kg�1 except for Italy. The difference in CWP among
importing and exporting countries resulted in the global
water saving through international wheat trade.

The volume of global water saving through wheat trade
from this study is appropriately 25% lower than the
103 · 109 m3 estimated by Chapagain et al. (2006). This
value is for an average during the period 1997–2001, and
was calculated based on the estimated CWP from Chap-
again and Hoekstra (2004). The trade volume of wheat is
only appropriately 4% higher in 2000 than that the average
over 1997–2001 (FAO, 2005b). Thus, the difference in glo-
bal water savings in the two studies stems mainly from the
different values of the national average CWP. Taking USA
as an example, the difference in the national average CWP
leads to as high as 12 · 109 m3 more water saving using
Chapagain and Hoekstra (2004) estimates compared with
those reported here. Another example is for Italy, the sec-
ond largest wheat importer. The lower national average
CWP reported by Chapagain and Hoekstra (2004) resulted
in water savings 2.5 times the value reported here. The
large discrepancy in the estimation of global water saving
through trade of wheat suggests that the values of CWP
are of great importance for global virtual water study,
and accurate estimation of CWP is necessary.

GEPIC is also used to estimate the potential global
water saving in wheat production in the year 2000 with
the potential CWP that could be achieved under optimal
water and fertilizer supply. Globally, about 278 · 109 m3

of crop water use could be saved with the same amount
of wheat production in 2000 (160 · 109 and 118 · 109 m3

in importing and exporting countries, respectively). The
results suggest that the magnitude of the water saving by
narrowing the gap between actual and potential CWP is
much larger than that of the water saving achieved through
wheat trade. This indicates that efforts to enhance wheat
yield and CWP are very important in efficiently use of
the global water resources.

7. Conclusion

GEPIC provides a practical tool for simulating crop
yield and crop water productivity (CWP) by integrating
the EPIC model with GIS. The integration facilitates the
effective use of spatially distributed climatic, soil, land
use, and irrigation data to estimate yield and CWP for each
grid with a global coverage. The comparison between sim-
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ulated yields and FAO statistical yields in 102 countries
over 10 years suggests a good performance of the model.
The simulated CWP is also mostly in line with the mea-
sured CWP in the literature. With its capability of simulat-
ing yield and CWP in the past, present and future under
real or assumed conditions, GEPIC also has potential to
be used to support policy formulation concerning water
use and food trade at both global and regional levels.

A comparison between the grid-based global maps of
wheat yield and CWP generated by GEPIC reveals a spa-
tial relation between them: high-yielding regions have high
CWP, and low-yielding regions have low CWP. The rela-
tion can also be observed between the national average
yield and CWP. In many European countries, the current
wheat yield and CWP are high due to relatively sufficient
water and fertilizer supply. In contrast, the current wheat
yield and CWP are very low in many African countries.
Simulating wheat yields assuming sufficient water and fer-
tilizer supply reveals that African countries can improve
yields and CWP significantly through better water and fer-
tilizer management. The difference in CWP among regions
has resulted in a global saving of water through interna-
tional wheat trade. The simulation, however, also suggests
that a greater and more meaningful global water saving can
be achieved by narrowing the gap between the potential
and actual CWP in individual countries.

The accuracy of the GEPIC output depends largely on
the quality of the input data. Since we do not have land
use map indicating spatial distribution of specific crops,
the simulation is based on all the grids with legend of dry-
land cropland and pasture or irrigated cropland and pas-
ture in the global land use map. The real wheat planting
pattern in a specific location may be different from the glo-
bal land use map, which may lead to simulation errors. For
example, our results did not indicate that Kansas is one of
the major wheat producing areas in the USA. This is
mainly because the global land use map shows only a few
grids in this region marked with the cropland legend. A
better quality of GIS data, including a global map of crop
planting patterns, would help improve the simulation accu-
racy of the GEPIC model.

The application of the GEPIC model is restricted by the
setup of the EPIC model. For instance, pest can lead to
yield losses, but the effects of pests on crop yield were
not addressed here. As a result, the GEPIC model may
overestimate crop yield in the regions where pest infesta-
tions are serious. Ignoring pest damage may be an impor-
tant reason for the overestimation of yields in Brazil (see
Table 1). Although EPIC has a generic pest component
for simulating insect and disease damage and a weed com-
petition component, they are difficult to apply on a global
scale. In addition, for large countries, such as USA, China,
and India, the GEPIC model should be calibrated and val-
idated on a smaller than a national scale. Despite the small
differences between simulated and statistical yields at the
national level, spatial pattern of simulated wheat yields
may not be consistent with the real spatial pattern. For
example, the simulated national average yield in India is
only 3.3% higher than the statistical national average yield
in 2000. However, the grid simulation results show that in
most areas of Rajasthan State in India, wheat yield was less
than 1000 kg ha�1, much lower than the reported yield of
about 1700 kg ha�1 (Priya and Shibasaki, 2001). Therefore,
for large countries it is more appropriate to calibrate and
validate the GEPIC model based on provincial statistical
data. An investigation at the sub-country level is underway.
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