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Abstract
Based on the target-field method of solving Fredholm integral equations of
the first kind, a new approach is presented in the paper for designing gradient
coils that can be used in a permanent-magnet magnetic resonance imaging
(MRI) system with biplanar poles. To restrict the current distribution on the
coil plane within a finite radius, the current density is pre-expanded into
Fourier series by orthogonal basis functions. By setting the target-field
points and Bz values over the imaging region of interest, corresponding
integral equations are derived from the Biot–Savart law to calculate the
current densities. They form a matrix equation, in which the unknown
elements of the column vector are the Fourier coefficients for the unknown
current density. As long as these target-field points are well chosen, the
Fourier coefficients can be solved by inverse matrix calculation instead of
the regularization method for Fredholm integral equations of the first kind.
Then the current density is discretized using the stream-function method to
generate the winding patterns. To verify the feasibility of this approach, the
gradient magnetic field generated by the current density is calculated via the
Biot–Savart law. Optimized parameters are obtained through computer
simulations for some shielded and unshielded transverse gradient coils. The
performance of this approach has been demonstrated as well.

1. Introduction

It is a tremendous challenge for gradient coil design in
magnetic resonance imaging (MRI) to generate a highly linear
magnetic field gradient in a large space with a finite size
coil while keeping small inductance and resistance, especially
for an eddy current shielded gradient coil. The target-field
method [1], proposed by Turner, has become the mainstream
method not only for the cylinder-current-system gradient
coil in superconducting MRI [2–5] but also for the biplanar
gradient coil in permanent-magnet MRI [6]. However, the
original Turner method [1] does not confine the current in a
limited region since it employed Fourier transforms though
his improved variant method [7] allows straightforward control
of coil length in gradient coil designs. Extracting the current
density distribution by solving the Fredholm integral equations

3 Author to whom any correspondence should be addressed.

of the first kind [8] is also a target-field method. Forbes and
Crozier [9, 10] used this method to design finite-length shim
coils for superconducting MRI, symmetric and asymmetric
shimming and gradient coils for permanent-magnet MRI
[11,12]. Morrone’s [13] method also belongs to this category.

To restrict the current distribution on the coil plane within
a finite radius, the current density is pre-expanded into Fourier
series via orthogonal basis functions. Then, with the target
field set in the imaging region of interest, an integral equation
is derived from the Biot–Savart law to calculate the current
densities. Solving the integral equation is known as an inverse
design problem. Since the integral equation is mathematically
ill-conditioned, there is no unique solution generally. Forbes
and Crozier [11,12] used a regularization approach, similar to
the Tikhonov method [8], to calculate the current density. Liu
and Truwit [6] restricted the current in a square area by using
Cartesian coordinates. Morrone [13] restricted the current in
a circular area by using polar coordinates (the expression he

0022-3727/07/154418+07$30.00 © 2007 IOP Publishing Ltd Printed in the UK 4418

http://dx.doi.org/10.1088/0022-3727/40/15/005
mailto: dlzu@pku.edu.cn
mailto: dlzu@mpe.pku.edu.cn
http://stacks.iop.org/JPhysD/40/4418


Target-field method for MRI biplanar gradient coil design

used for calculating the magnetic induction Bz is not correct).
In this paper, we employ Morrone’s trigonometric functions
in the polar coordinate system as basis functions. Derived
directly from the Biot–Savart law, the exact expression of Bz

can be regarded as an integral equation for calculating the
current densities when the magnetic induction field is specified
in advance over some target regions. Mathematically, such an
equation is known to be ill-conditioned, but we find that under
certain physical and engineering conditions it is possible to get
desired solutions by using a straightforward approach instead
of using the Tikhonov regularization method [8].

2. Theory

In a permanent-magnet MRI system with biplanar poles,
gradient and shim coils as well as RF transmitter coils are
arranged on opposite planes. Among them the biplanar
gradient coils are usually set in a finite region on planes
at z = ±a and their radii ρ meets ρ0 < ρ < ρm.
Trigonometric functions in a circular polar coordinate system
as basis functions are then used to express current density
series [13]:


Jρ =

Q∑
q=1

Uq
k
ρ

sin[qc(ρ − ρ0)] sin kϕ,

Jϕ =
Q∑

q=1
Uqqc cos[qc(ρ − ρ0)] cos kϕ,

(1)

where c = π/(ρm − ρ0), q and k are integers, ρ0 is the
minimum radius, ρm is the maximal radius, Uq is the current
expansion coefficients, Q is the order of the expansion. We
know from equation (1) that in the area of ρ � ρ0 and ρ � ρm,
Jρ = 0, which ensures the current is confined within a finite
area. The parameter k determines the order of the coils. It
is only necessary to consider one k value at a time to design
gradient coils and most shim coils. When k = 0, the current
density can generate a longitudinal gradient field (z-gradient)
or a constant magnetic field. When k = 1, the coils generate
the transverse linear gradient field in either x or y direction.
By rotating 90◦, an x-gradient coil becomes a y-gradient coil.
Shim coils can be obtained by setting k � 2. It must be
emphasized that when Q → ∞, equation (1) is determined by
all levels of the current densities. When Q is a finite number,
the finite order Uq can approximately determine the current
density. The distribution of plane current density satisfies the
two-dimensional equation of continuity

∇ · �J = 1

ρ

[
∂

∂ρ
(ρJρ) +

∂Jϕ

∂ϕ

]
= 0. (2)

2.1. Transverse gradient coils

The two plane coils, with current flowing within the circles,
are at z = ±a, respectively, as shown in figure 1. In polar
coordinates, at the source point P ′(ρ, ϕ), the two components
of the current density are Jρ and Jϕ , respectively. The two
current planes generate a magnetic field, �B, at the field point
P(x, y, z) by the Biot–Savart law,

�B(x, y, z) = µ0

4π

∫ �J × �R
R3

dσ ′, (3)

Figure 1. Biplanar gradient coils system.

where µ0 is permeability of vacuum, �J is the current density
at the source point, �R is the vector from the source point to the
field point, dσ ′ is the area element at the source point. Only
the axial component of the magnetic field is interested here,
which can be obtained from equation (3)

Bz(x, y, z) = µ0

4π

∫∫
dx ′ dy ′

R3
[Jx(y −y ′)−Jy(x −x ′)]. (4)

In the polar coordinates system, it can be further expressed as

Bz = µ0

4π

ρm∫
ρ0

2π∫
0

ρ dρ dϕ

R3
[(Jρ cos ϕ − Jϕ sin ϕ)(y − ρ sin ϕ)

− (Jρ sin ϕ + Jϕ cos ϕ)(x − ρ cos ϕ)]. (5)

Setting the two planes z = a and z = −a as + and − planes,
the sum magnetic field of two planes is

Bz = µ0

4π

ρm∫
ρ0

2π∫
0

ρdρdϕ

R3
+

[(Jρ cos ϕ − Jϕ sin ϕ)(y − ρ sin ϕ)

− (Jρ sin ϕ + Jϕ cos ϕ)(x − ρ cos ϕ)]

+
µ0

4π

ρm∫
ρ0

2π∫
0

ρdρdϕ

R3−
[(Jρ cos ϕ − Jϕ sin ϕ)(y − ρ sin ϕ)

− (Jρ sin ϕ + Jϕ cos ϕ)(x − ρ cos ϕ)], (6)

where R± = [(x − ρ cos ϕ)2 + (y − ρ sin ϕ)2 + (z ∓ a)2]1/2.
Equation (1) is series summation in terms of q.

Substituting equation (1) with k = 1 in equation (6), Bz

becomes

Bz =
Q∑

q=1

Uq


 µ0

4π

ρm∫
ρ0

2π∫
0

ρ dρdϕ

R3
+

[(sin β − qcρ cos β)

× (y − ρ sin ϕ) sin ϕ cos ϕ
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− (sin β sin2 ϕ + qcρ cos β cos2 ϕ)(x − ρ cos ϕ)]

+
µ0

4π

ρm∫
ρ0

2π∫
0

ρdρdϕ

R3−
[(sin β − qcρ cos β)

× (y − ρ sin ϕ) sin ϕ cos ϕ

− (sin β sin2 ϕ + qcρ cos β cos2 ϕ)(x − ρ cos ϕ)]

}
,

(7)

where β = qc(ρ − ρ0).
The values of target-field points Bz can be predetermined,

and the positions of these points are known. So according to
equation (1), the current density can be determined by solving
the coefficient Uq from equation (7). Herein we define an
intermediate term

Dq = µ0

4π

ρm∫
ρ0

2π∫
0

ρ dρ dϕ

R3
+

[(sin β − qcρ cos β)

× (y − ρ sin ϕ) sin ϕ cos ϕ

− (sin β sin2 ϕ + qcρ cos β cos2 ϕ)(x − ρ cos ϕ)]

+
µ0

4π

ρm∫
ρ0

2π∫
0

ρdρdϕ

R3−
[(sin β − qcρ cos β)

× (y − ρ sin ϕ) sin ϕ cos ϕ

− (sin β sin2 ϕ + qcρ cos β cos2 ϕ)(x − ρ cos ϕ)].

(8)

Then equation (7) is written as

Bz =
Q∑

q=1

UqDq, (9)

where the element Dq is just the function of the field point
P(x, y, z), Bz refers to the magnetic field at the point
P(x, y, z) and the element Uq is the coefficient of the current
density series in equation (1). Writing a matrix form,



B1

B2

B3
...

BQ


 =




D11 D12 D13 · · · D1Q

D21 D22 D23 · · · D2Q

D31 D32 D33 · · · D3Q

...
...

...
. . .

...

DQ1 DQ2 DQ3 · · · DQQ







U1

U2

U3
...

UQ


 . (10)

The linear algebra equations are equivalent to equation (7).
By solving Uq in equation (10), the current density can be
determined if at least Q target-field points are known.

2.2. Shielded transverse gradient coils

In a permanent-magnet MRI system, biplanar gradient coils are
close to the iron-pole surface of the magnet. Consequently,
the eddy currents become more serious than those in a
superconducting MRI system. The most efficient way to deal
with the eddy currents is to suppress the fields that cause them,
which is the principle for designing shielded gradient coils. By
using a couple of shield coils in the outer space of primary coils,

x

y

z

-a

a

0

P(x,y,z)

b

-b

Figure 2. Shielded gradient coils system.

the field generated counteracts the field from the primary coils
to a minimum level. Assuming the shield coils are located at
positions z = ±b (b > a) as shown in figure 2, the expression
of the current density on the shield coils is similar to that of
the primary coils, and the coefficient of the series is supposed
to be Vq . The Bz by the Biot–Savart law is written as

Bz =
Q∑

q=1

UqDq +
P∑

q=1

VqEq. (11)

Similar to equation (9), the elements Dq and Eq are just
the functions of the field point P(x, y, z). With target-field
points Bz defined first, there are Q + P unknown variables in
equation (11). Therefore Q + P target points in the space of
imaging region and shielding region are needed for solving the
equation. Given the target points and the corresponding target
values, Bi (i = 1, 2, . . . , Q + P ), equation (11) is written as a
matrix equation after calculating Diq and Eiq from equation (8)




B1

B2
...

Bi

...

BQ+p




=




D11 · · · D1Q E11 · · · E1P

D21 · · · D2Q E21 · · · E2P

...
. . .

...
...

. . .
...

Di1 · · · DiQ Ei1 · · · EiP

...
. . .

...
...

. . .
...

DQ+P 1 · · · DQ+PQ EQ+P 1 · · · EQ+PP







U1
...

UQ

V1
...

VP




.

(12)
Solving Uq and Vq from equation (12) by the same method as
above, the current density in the primary and the shield coils
can be determined at the same time.
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Table 1. Parameters of transverse gradient coil with different Q indices.

Q Max. departure Number of Number of Resistance
from linearity Efficiency Number of small current Inductance (m�)
(%) (mT m−1 A−1) turn loops oscillation (mH) (10 mm2)

1 66.75 0.121 11 0 0 0.101 44.12
2 48.81 0.087 11 0 0 0.121 51.65
3 22.41 0.069 13 0 0 0.174 58.96
4 8.46 0.061 12 1 0 0.209 65.67
5 3.86 0.05 16 1 0 0.171 75.46
6 3.62 0.042 21 1 1 0.281 86.5
7 0.41 0.036 21 0 1 0.227 101.01
8 0.81 0.033 23 0 1 0.195 110.48
9 0.07 0.025 28 0 1 0.38 137.05
10 0.06 0.022 33 1 1 0.35 156.35
11 0.02 0.018 37 1 1 0.575 182.68
12 0.14 0.021 42 0 3 0.524 199.22

2.3. Generating winding patterns

From the distribution of current densities calculated above, the
winding patterns can next be calculated by the stream-function
method [14]. Since the current density satisfies the steady flow
condition

∇ · �J = 1

ρ

[
∂

∂ρ
(ρJρ) +

∂Jϕ

∂ϕ

]
= 0,

we can introduce the function I (ρ, ϕ) on the coil planes


∂I (ρ, ϕ)

∂ρ
= −Jϕ(ρ, ϕ)

∂I (ρ, ϕ)

∂ϕ
= ρJρ(ρ, ϕ).

(13)

According to equations (1) and (13), the stream function is
found as follows:

I (ρ, ϕ) = −
Q∑

q=1

Uq sin[qc(ρ − ρ0)] cos ϕ. (14)

Assuming the coil on a half-circular plane consisting of N turns
of wire, we choose a set of contours, {I (ρ, ϕ) = (i + 1/2)I0,
i = 0, 1, 2, . . . , N−1}, where I0 = Imax/N , and Imax refers to
the maximal value of the stream function on the half-circular
plane. The contours represent the winding patterns. Using
the stream-function method, the current in every turn can be
ensured equal to I0. Additionally, the turn number N and the
current I0 can be controlled.

3. Results

In numerical simulation studies, parameters are chosen
according to the practical design. The maximal radius of the
gradient coils ρm = 42 cm, the maximal radius of the shield
coils ρsm = 50 cm, the minimal radius ρ0 = 1 cm, the distance
between the gradient coil plane and the centre plane a = 23 cm,
the distance between the shield-coil plane and the centre plane
b = 29 cm (the distance between the gradient coil plane and
the shield-coil plane is 6 cm). The imaging region of interest is
a 40 × 40 × 30 cm3 spheroid, i.e. the coordinates x: −20 cm–
20 cm, y: −20 cm–20 cm, z: −15 cm–15 cm. In the imaging
region the goal gradient field Gi=25 mT m−1, with i = x, y, z,
respectively. The shielded region is the outboard space of the
shield coils, set as |z| � 29.5 cm.

3.1. Transverse gradient coil

Due to the spatial symmetry of the biplanar transverse gradient
coil system, magnetic field at each space point can be
calculated by the space symmetry transform of the first octant
(x > 0, y > 0, z > 0). Therefore, the target-field points
need to be set only in the first octant. As a matter of fact,
during simulation we find that if the target-field points are set
at symmetric positions in other octants, the matrix equation
appears seriously ill-conditioned, thereby lacking a solution.
According to the design requirement, on grids of a 5 cm long
cube, we choose 29 target points in the first octant with each
target value set as Bzi = Gxxi . Using the above target-field
method, theseUq (q = 1, 2, . . . , N ; N < 29) values are found;
then distributions of the current density are obtained, and the
winding patterns are determined through the stream-function
method. Theoretically, it seems necessary to set Q bigger than
or equal to 29 to make the matrix equation solvable. However,
in practice, for the gradient in the imaging volume, a certain
tolerance (<5%) can be accepted and a reasonable Q to provide
accurate solutions is enough.

A key concern is to determine appropriate numbers for
the index Q in equation (1). Different Q determines different
winding patterns, since there is no unique solution to this
problem. We implement a series of simulations for Q from 1
to 12. The effectiveness of the coil design has been evaluated
by calculating the magnetic fields. This is accomplished using
the Biot–Savart law (8), given the computed current density
components and stream functions. To compare the coils with
almost the same gradient field in the imaging region, the
simulation results are listed in table 1.

The table shows a trend that the linearity in the imaging
region is getting better when Q increases. For a larger Q the
coil can produce a gradient field exactly equal to the target field.
At the same time, other parameters of the coils become worse
as Q grows. These include the appearance of ‘small loop’
and current oscillation in the coil planes which leads to poorer
efficiency, larger inductance and higher resistance. A larger
inductance means the coil has a slower slew rate; and a higher
resistance means the coil dissipates more power. Therefore, a
compromise has to be made among these parameters. Here,
as the requirement of maximum offset from linearity <5%,
a coil with Q = 5 is the most optimal. For the typical
case with Q = 5, figure 3(c) shows the winding pattern,
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Figure 3. The winding pattern of the gradient coil with (a) Q = 3, (c) Q = 5, (b) the field (solid) along x-axis produced by the coil shown
in (a) and (d) the field (solid) along x-axis produced by the coil shown in (c). The target field is shown as a skew dashed line, and the pair of
vertical dashed lines indicate the positions that define the imaging region.

Figure 4. The winding pattern of unshielded gradient coil when Q = 6 (a) and Q = 10 (b).

and (d) shows the magnetic field component along the x-axis.
Figure 3(a) and (b) show the case when Q = 3 for comparison.
Higher degree of accuracy implies a bigger region with linear
gradient. As Q increases, although the coil designed has a
high degree of accuracy, the current on a half-circular plane
oscillates as shown in figure 4. As a solution they are more
accurate mathematically. However, such coils are not useful
due to their low efficiency, large induction and resistance as
well as manufacturing issues.

3.2. Shielded transverse gradient coil

According to the design requirement (imaging region is a
40 × 40 × 30 cm3 spheroid), 29 target points in the region
of interest uniformly located on the grids of a 5 cm long cube
are set in the first octant, and their target values are set as
Bi = Gxxi . The 40 restricting target field points in shielding
space are set equidistantly at the plane z = 29.5 cm (x > 0,
y > 0), and the corresponding target values are set to zero.
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Figure 5. The winding patterns of shielded gradient coils with Q = P = 3: (a) the primary coil; (b) the shield coil. The distance between
the primary coil and the shield coil is 6 cm.

Figure 6. The field generated by shielded gradient coils when
Q = P = 3.

When we come to solve the problem, indices Q and P are also
the key concerns. Besides the linearity of the gradient field and
the efficiency of the coils, the shielding efficiency in the outer
space needs to be considered in the design. The general rule
is that the bigger Q is, the better the linearity of the gradient
field; the bigger P is, the higher the shielding efficiency in the
outer space. In addition, P should not be smaller than Q for
better shielding. However, the larger P and Q are the lower
the coil efficiency is. It is important to note that in practice,
the currents in the gradient and shield coil should be the same,
since different currents need different sources, which are hard
to be synchronized.

In the calculation, Q and P are set to 3; and the currents
in all the coils are the same. The winding patterns of the
primary and shield coils are illustrated in the figures 5(a) and
(b), respectively. Dashed lines indicate reverse windings. The
magnetic field generated by this coil is shown in figure 6. In
the imaging region, the gradient field of Gx = 25 mT m−1

requires the input current to be 500 A. The oblique dashed
line stands for ideal gradient. The vertical dashed lines mark
the boundary of the imaging region. The horizontal dashed
line shows the magnetic field, which is close to zero, outside

the shield coil (z � 29.5 cm). The gradient field has a good
linearity (at x = ±7 cm, non-linearity = 7.4%) in the imaging
region while the field in the shielding region is well controlled.
The efficiency of the coil system is 0.05 mT m−1 A−1 and there
is no current oscillation.

4. Discussion

Generally, the forward problem of electromagnetic field has
unique solutions. Inverse design problems using a Fourier-
transform technique avoids the ill-posed nature since Fourier-
transform has unique inverses. However, for finite size plates
the integral equation technique has to face the ill-posed nature
of the problem. The governing equations (6) and (7) are all
integral equations derived from the Biot–Savart law. Given Bz-
field values at discrete target points over the imaging volume
the current densities on the opposite biplanar are the unknown
variables to be found. The components Jρ and Jϕ are not
independent and satisfy equation (2). Therefore, equations (6)
and (7) belong to the typical Fredholm integral equations
of the first kind. Their ill-posed nature may appear either
without unique solutions, or unstable solutions, or even non-
existent solutions. In other words, the ill-posed degree of these
equations varies depending on the choice of the target-field
points. For the equivalent matrix equations (10) and (12), the
mathematical nature of the connectivity matrix is intimately
connected with the choice of the target-field points. Our
numerical simulations show that if the target-field points are set
in the first octant, the problem is not ill-posed. Therefore it is
possible to get desired solutions easily using matrix software
instead of the standard Tikhonov regularization method [8].
Though there is no unique current density which satisfies each
equation, the approximate current density can be obtained.
When the index numbers Q in equations (1), (7), (9) and (10)
are properly chosen (not very large), the approximate current
density found through inverse matrix calculation meets the
target field with reasonable accuracy. Nevertheless, outlined
by equation (1), the increase in Q also leads to more frequent
oscillation of the current density. The counteraction of the
field caused by the frequently reversed current reduces the
efficiency of the gradient coils and increases the difficulty in
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manufacturing. Thereby, a compromise must be made between
accuracy and efficiency. From this point of view, an absolutely
accurate solution to the integral equation is not worth pursuing.
The effectiveness of the coil design is assessed by calculating
the magnetic field with the Biot–Savart law, which is used
as a gold standard. According to the simulation results the
region of linearity increases as Q increases. Consequently, to
use the Tikhonov regularization [8–12] the Fredholm integral
equations of the first kind is unnecessary. Moreover, the
aim to use the Tikhonov regularization is to find a unique
solution. Although the solution may be mathematically
accurate, it is not likely to be the best one in terms of
engineering. In addition, the regularizing parameters and the
penalty functions can be freely chosen by designers according
to their experience. As an alternative to the regularization
approach, the method reported in this paper is efficient and
convenient.

5. Conclusion

In summary, this paper provides a suite of simple approaches
to design gradient coils, which can meet the requirement
of linearity, for permanent-magnet MRI systems, while the
geometry shape and size of the coil can be realized according
to the design requirement. Moreover, eddy currents can be
avoided by designing shielded coil systems. The method

should also work for designing longitudinal gradient and shim
coils.
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